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Abstract 

An analysis of the current  on an infinite cylindrical antenna which 

is excited a c r o s s  a circumferential  gap of non-zero thickness and immersed  

in a lossy,  compressible ,  magnetoplasma with i t s  ax is  paral le l  to the s ta t ic  

magnetic field, is described. Some numerical  r e su l t s  a r e  presented for  the 

antenna admittance f o r  the sheathless case,  where the uniform magnetoplasma 

is in contact with the antenna surface. 

a numerical  integration of the Fourier  integral  for  the antenna current ,  and a r e  

given f o r  plasma parameter  values typical of the E-region of the ionosphere. 

The admittance values a r e  obtained f rom 

The admittance resul ts  obtained exhibit a maximum slightly above 

the electron cyclotron frequency (fh) ,  and in this  regard  a r e  similar to  those 

obtained when the magnetoplasma is incompressible but separated f rom the antenna 

by a f ree-space  layer  (the vacuum sheath). The conductance is found to  exceed 

the susceptance except in the frequency range encompassed by the upper hybrid 

frequency and fh, which is also approximately the range of inductive susceptance, 

the susceptance otherwise being capacitive. 

hibit a minimum o r  slight kink at the plasma frequency, a feature a lso found in 

the imcompressible  magnetoplasma resul ts .  It is concluded that of the plasma 

compressibil i ty,  plasma anisotropy and the vacuum sheath, taken separately,  the 

l a t t e r  two exert  the strongest influence on the infinite antenna admittance. 

The admittance is a l so  found to  ex-  

A comparison of the theoretical resu l t s  with experimental  measa re  - 

ments  of antenna impedance in the ionosphere shows there  to  be a qualitative 

s imi la r i ty  in the admittances. In par t icular ,  the experimental  admittance is 

found to have a minimum o r  kink at the plasma frequency, s imi la r  to that observed 

in  the theoretical  resu l t s  while a n  experimental  adxi t tance  maximum- is found 

above the cyclotron frequency, indicating the influence of a sheath and/or  the 

pla s ma c omp r e s s ib ilit y . 



I. Introduction 

With the opportunities now afforded by rocket and satell i te ex -  

perimentation in the ionosphere, there has  developed today a grea t  deal of 

interest  in the behavior of p lasma- immersed  antennas. 

to the necessity for  predicting the influence of the ionospheric plasma on 

te lemetry antennas utilized in the rocket o r  satell i te payload. 

equal importance however, is the desire  to use i f  possible, an antenna a s  a 

diagnostic probe for  determining some of the propert ies  of the ambient ionos- 

phere in which it is immersed.  

the la t te r  goal in mind in an attempt to  gain a better understanding of the 

relat ive importance of the various fac tors  which may influence the admittance 

of an  antenna in the ionosphere. 

effects which a r i s e  f rom the non-zero plasma temperature ,  and the plasma 

anisotropy result ing from the ionospheric magnetic field. 

This  is in  par t  due 

Of a s  least  

The present study has  been undertaken with 

Among these factors  a r e  acoustical  and sheath 

The antenna geometry chosen for the investigation is that of an 

infinite, cylindrical  dipole driven at a c i rcumferent ia l  gap of non-zero thickness, 

a geometry which allows a rigorous boundary value problem approach to be used. 

The antenna is oriented with i t s  axis paral le l  to the static magnetic field in the 

plasma.  

viously by the author (Miller,  1967a, r e fe r r ed  to hereaf ter  a s  I ) ,  and in a sub-  

sequent report  (Miller,  196713, re fer red  to hereaf ter  a s  11) the incompressible,  

anisotropic plasma was considered. 

f o r m s  about a body at floating potential in a warm plasma was approximated by 

a concentric,  f ree-space  layer  between the antenna and the external uniform 

plasma,  a sheath model commonly r e fe r r ed  to in the l i t e ra ture  a s  a vacuum 

sheath.  

.I, 

The case  of the compressible''; isotropic plasma w a s  reported on p r e -  

In both I and II the actual sheath which 

.Ir -8. 

A "compressible plasma' '  is used in  this  report  to  denote a plasma in which 
the  e lec t ron  p r e s s u r e  wave, or electrokinetic wave, can propagate. 

1 



In the present report ,  the t rea tments  given in  I and I1 are  extended 

to  the more  general case of the compressible,  anisotropic plasma medium. 

This  means that the antenna can excite th ree  mode types in  the plasma, two of 

which are  basically electromagnetic (EM)  in nature, and one a basically e lectron 

p r e s s u r e  o r  electrokinetic (EK) wave. 

sult of the plasma anisotropy, none of them i s  purely electromagnetic o r  e lec t ro-  

kinetic. By comparison, two EM modes a r e  encountered in the development of 

11, while in I there i s  one E M  and the E K  mode to be considered. 

sheath model will be considered he re  in formulating the boundary value problem, 

but due to the extreme complexity of the numerical  calculations, numerical  r e -  

sul ts  a re  given here  fo r  the sheathless  case  only. 

Since these waves are  coupled as  a r e -  

A vacuum 

A comparison of the admittance r e su l t s  obtained h e r e  with those 

previously given in  I and I1 w i l l  be made, in an attempt to demonstrate  the r e -  

lative influence of the various fac tors  considered on the infinite antenna admittance. 

The relevance of the calculated resu l t s  to some experimental  measurements  of 

antenna impedance in the ionosphere will be discussed. 

the experimental  and theoretical  resu l t s  a re  in qualitative agreement  on some 

significant fea tures  of the admittance variation with excitation frequency. 

I and 11, the RMKS sys tem of units will be used unless  otherwise specified. 

It will be shown that 

A s  in 

1 
i 
1 
I 
I 
I 
i 
1 
I 
I 
1 
1 
I 
I 
I 
1 
I 
I 
I 
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11. Formulation. 

The field behavior in the plasma is described by the time-dependent 

hydrodynamic equations for the electrons (ion motion is neglected) together 

with Maxwell's equations, as 

P (r, - t )  = k N ( r ,  - t )  T (r, - t )  (6)  

where - E a n d  - H a r e  the total  electric and magnetic fields, - V, N and P a r e  the 

macroscopic  electron velocity, number density and pressure ,  -q and m a r e  

the electron charge and mass,2) is the electron collision frequency, Eo and 

c-lo a r e  the permittivity and permeability of f r e e  space, and - r and t a r e  the 

space and t ime coordinates. 

the electron gas.  

The quantity y is the ra t io  of specific heats  for  

The procedure followed he re  is the same  a s  that used previously in 

I and 11, in that Eqs.  (1) - (6 )  a r e  l inear ized by introducing t ime varying o r  

dynamic perturbation quantities which a r e  smal l  in comparison with the 

t i m e  varying o r  s ta t ic  quantities. 

problem depends on the sheath model used in the analysis,  the vacuum sheath 

and  inhomogeneous sheath models will be t rea ted  separately below. The vacuum 

sheath model is one where the actual sheath is replaced by a f ree-space layer  

non- 

Again, since the result ing boundary value 

3 



which separa tes  the antenna f rom the external uniform plasma. 

geneous sheath model is one where the actual  sheath inhomogeneity is taken 

into account, and the plasma extends to the cylinder surface.  

the sheath is assumed to be of finite thickness and of radius  p = s, forming 

a concentric iayer between the antenna sur face  of radius  p = c, whose ax is  

is coincident with the z-axis of a cylindrical  ( p , ~ ,  , z)  coordinate system, and 

the external  uniform plasma. 

circumferential  slot of non-zero thickness centered a t  z = 0, a c r o s s  which 

a voltage e 

Contrary to the isotropic plasma case  investigated in I, an azimuthal, as well 

as an axial  antenna current  a r e  excited, a s  a resul t  of the static,  axially- 

directed magnetic f ie ld .  While the problem is he re  formulated for  the sheathed 

antenna for  the sake of generality, because of the ex t reme complexity of the 

numerical  calculations, admittance resu l t s  w i l l  be presented for  the sheath- 

less case  only. 

The inhomo- 

In either case,  

The antenna is assumed to  be excited by a 

iwt which is independent of the azimuthal coordinate (D is applied. 

4 



11. 1. The Vacuum Sheath. 

In analyzing the vacuum sheath model, Eqs. (1) - (6) a r e  required 

to  descr ibe the fields in  the uniform magnetoplasma region external  to the 

sheath, while only (5) and (6) a r e  required for the sheath region itself with 

N( r ,  L t )  = 0 there .  We consider first of all the plasma fields, and l inear ize  

(1) - (6) by introducing 

- -  E ( r ,  t )  = - -  e (r, t)  (7a) 

H ( r ,  - -  t )  = H2 + h - -  (r, t )  (7b) 

- -  V ( r ,  t)  = v - -  (r, t)  (7c) 

N (r, - t )  = N + n(r ,  - t)  ; 1 n k <  I Nj (7d) 

(Ye) 

(7f)  

P (r, t )  = P + p(r, t)  ; I p I<< I P I 1 

T (r, - t )  = T + T(r, - t)  ; 1 T I < <  I T I  

V x  - -  e (r, t )  = - 'loat k ( r , t )  

F x  - -  h ( r , t )  = Eo - a at - e (r, - t)  -q N - -  v (r, t )  

- 

so that (1) - ( 6 )  become 

(8) 

(9)  

a 

(11) 

? 

a n(r ,  t )  + N V* v(r ,  - t) = o 
at - 

Note that the s ta t ic  and dynamic p res su res  a r e  given by 

P = kTN 

p = y k T n  

so that when y is set  to  zero,  the dynamic p res su re  is a l so  zero  and the 

plasma is incompressibie since the electrokinetic (EK) wave does not pro-  

pagate. If instead, the plasma is of zero  temperature ,  then the total  p re s su re  

5 



is zero. The plasma may thus be of non-zero temperature  and may o r  may 

not be compressible,  but is always incompressible when the tempera ture  is 
9 

zero.  In the resul ts  to  follow, we assign a value of 3 to  y, so that ykT = mv:, 

with v the r m s  electron velocity. 

respect  to  t ime appearing in (8)  - (11) by using the t ransform pair  

If we Four ie r  analyze the var iables  with r 

03 

iwt 4 e ( r ,  t )  = - e _ -  e(r ,w) dw 2-K -- 
-03 

e ( r ,  t )  dt & - iwt e ( r ,  w) = -- 
-03 

then we obtain 

After a fur ther  Four i e r  t ransform with respace  to z, given by 

03 
J 

-00 

03 

2J 

-03 

6 

(15) 



we can solve for  the electron velocity f rom (13) - (15) to  obtain 

2 
q 5 =  P v r  ;= imwU e -  z NUw n 7 = - -  

Z 

r 

where the explicit dependence of the t ransformed quantities onp and w is 

hereaf te r  understood, and the pr ime denotes differentiation with respect  to 

p .  Note that the fact has  been used that the field quantities a r e  independent 

of the azimuthal coordinate 9 ,  since the source is independent of ‘9 A l s o  

The velocity expressions may be inser ted into (13) to get 

7 



where 

0 0 i 

o ?  
O i  

I 

Upon taking the c u r l  of (12) and the c u r l  and divergence of (13) 

together with the use of (15), we may obtain, a f t e r  some simplification, 

the following coupled wave equations 

8 



2 -  2 
P P a P  E o  - W L f o f -  0 

where 7 = &. (pa%), K 

It is of interest  to  s ee  that h 

A s  a check, the sys tem of equations (18) - ( 2 0 )  should reduce to  the incom- 

press ib le  plasma equations given i n  I1 when v +O. r 

tempera ture  becomes zero,  (18) - (20 )  become 

- z 

appears  in only two of the three  wave equations. 
Z 

Thus when the electron 

- 
It may be seen that 

(13) and (15) which yield 

is not zero unless  Y = 0, a resul t  a l so  shown by 

and since f r o m  (13a) we get 

we then find 

9 



Equations (21) - (23) may be simplified to  

with the details  shown in Appendix A. The expressions (24) and (25)  are 

identical to  the wave equations obtained in I1 for  the anisotropic, incom- 

ress ib le  plasma. 

Returning now to the compressible  plasma equations (18) - (20) ,  

we introduce 

so that 

where 

- 

T = I  G1 

G2 

G3 

K ~ ~ ~ c ~ -  P 2 
> 0 

; KEo ' 3  ' -6 ; qwY( 1-P 2Vr2/W2U)/U 

Multiplying (27) f rom the left by T - l  we obtain 

(25)  

(26 )  

A solution fo r  the coupled plasma f ie lds  may be obtained i f  the mat r ix  

T-'. C *  T can  be diagonalized. 

defined by 

If the columns of T a r e  the eigen vec tors  of C_, - __ - - -. - -. 

10 



1 
where T j  is the j th  column of T and h is the corresponding eigen value, 

then 
j - - - 

Multiplying f rom the left by T - l  we get 
r 

where 

0 

2 
0 

x 
3 

A :! 
Solutions for  the individual GIs  a r e  thus 

( v  2+k.) G. = 0 ; j = 1 , 2 , 3  
P J J  

and may be written, for  the cylindrical geometry, 

(31) 

as 

where Ho(2)is the Hankel function of the second kind and o rde r  zero,  and the 

A . ' s  are  the wave amplitudes to  be determined by the boundary conditions. 

o r d e r  t o  ensure the proper  behavior o r  the solutions at infinity, the roots  of 

1 having a negative imaginary part must be used. 

In J 

j 

11 



The eigen values of C are solutions, w i t h l  the identity matrix,  t o  - - 

which is explicitly given by 

,13+ a2A2+ a l X +  a. = o 
where 

a l  = '11'22' '22'33' '33'11 

-'13'31 - '23'32 

aO = c13c22c31+ '11'23'32- '32'13'21 

Finally, the eigen vec tors  - Tj a r e  obtained f rom (30a). 

homogeneous equations in the nine elements  of T - represented  by (30a) it is 

c l ea r  that a non-trival solution is possible only i f  some of the elements of 

- T a r e  a rb i t ra ry .  Since in addition, the nine equations break up into th ree  

s e t s  of th ree  unknowns, each set  ( j  = 1, 2, 3) involving the th ree  elements of 

each eigen vector '$, it is c l ea r  that th ree  of the elements  of - are arb i t ra ry .  

F o r  convenience, we se t  the T1 elements equal to  1, so that 

Since there  a r e  nine 

j 

r r 1 

where j = 1, 2, 3 
2' e 

The quantities e Z' hZ and n now se rve  a s  potentials f rom which the 

other field components may be found, a s  

12 



F' 91 $ 3 1  
DZ = C n - ipAeZ- iwoBhz  

P 

L 

where 

2 2  D = A + B  

I 
C+ = - KEo (Akl+  Bk ) 

c = - K E o  (Ak - Bkl) 
- 1 

Now that the field quantities in the compressible  magnetoplasma 
Fs* w ,e 

have been obtained in t e r m s  of the potentials eZ ,  hZ, and n, o r  equivalently 

in t e r m s  of the Gj,  the boundary value problem for the vacuum sheath model 

can be specified. 

for  t h i s  purpose since there  a r e  three amplitude coefficients to  be determined 

fo r  the plasma fields, and four for the vacuum sheath where there  are both 

inward and outward propagating t ransverse electr ic  (TE) ( e z  = 0 )  and t r ans -  

v e r s e  magnetic ( T M )  (hz = 0)  fields. The sheath fields may be generated in  

t e r m s  of potential functions also, where 

Seven sca la r  boundary condition equations a r e  required 



The subscr ipts  e and m re fe r  respectively to 

upon using the superscr ipts  I and R to denote 

the TE and T M  fields, 

the fields propagating 

+p and - p  directions in  the sheath, the potentials a r e  of the f o r m  
/u /v 

and 

in the 

W e  u s e  the  usual boundary conditions of continuity of the tangential 

e lec t r ic  and magnetic f ie lds  at  the vacuum sheath-uniform plasma interface 

( p = s )  and vanishing of ea on the surface of the perfectly conducting antenna 

(p=c) ,  which is a total  of five sca la r  boundary condition equations. 

two equations involve the field a t  the exciting circumferent ia l  gap on the 

The final 

antenna surface,  and the normal  electron velocity at the sheath-plasma 

interface. A voltage e excites the antenna, being applied a c r o s s  a c i rcum-  

ferential  gap of thickness 6 centered at  z = 0. 

i w '  t 

The axial  e lec t r ic  field vanishes 

everywhere on the antenna surface except at  the gap where it is assumed equal 

to  the gap field, which f o r 6  sma l l  compared with the excited wave-lengths, is 

iw't,& given by -e Thus 

(37) 

= + 2 . r r d ( w - w ' )  s ( p  ) 

The boundary condition on the electron velocity a t  the sheath-plasma interface,  

is written a s ,  f o r  the sake of generality, - 
v = Y B Z  

P 
(38) 

where Y is the surface admittance (Cohen, 1962), and may be non-zero f o r  

an absorptive - type boundary (Balmain, 1966).  

B 

14 



The seven sca la r  boundary condition equations a r e  then written 

= o  I '  R '  
A e  Hc2+ *e H c ~  

\ 2  

where 

the pr ime denotes differentiation with respect  to argument, and 

0 



The system of equations (39)  - (45) is quite complicated, par t icular ly  

when the dependence of the var ious plasma fields upon the Gj solutions is 

considered. Some simplification can be effected by using (39) and (40) t o  

eliminate two of the coefficients, thus leaving five equations in  five unknowns 

to  be solved. 

indicated the utility, for  now a t  least ,  of attacking the sheathless  case  

instead. T h i s  has t h e  advantage of providing a check solution fo r  a possible 

subsequent numerical  t reatment  of the vacuum sheath problem, while at the 

same  t ime being sufficiently l e s s  involved as to  be numerically feasible to  

t rea t .  

The extreme complexity of solving th i s  sys tem of equations 

16 



I 

11. 2, The Sheathless Case, 

I When there  is no sheath (o r  equivalently fo r  the vacuum sheath case,  

I 
i 
I 

when s = c),  then the nine boundry condition equations (39)  to  (45) simplify to  

e Z ( c J 8  a) = S(B ) 2~ 6 (w-w') (46) 
5=: 

(47) 

In the calculations to  follow, we take Y = 0 (i. e . ,  the rigidity boundary 

condition) so that in the following development the right hand side of (48) is 

set  equal to  zero.  

and (48) leads to ,  with the pr ime denoting differentiation with respect  to  p ,  

B 

= x  G3 
The substitution of the potentials eZJ  hZ and n into (47) 

I 

= I  

C%' + i fj BZz' -iw,uoAhZ = 0 
-C%' + ij3 -A-D/(P  2-KEo21?z' + iwDoBhz = I  = 0 

L 

(49) 

(50) 

where the potentials are understood to  functions of pJj3 and w evaluated a t  
C l  

p=c. It is convenient to eliminate: andzz ' ' f rom one of the two equations 

in  which they appear,  so  that (49)  and (50) become 

where 
+ 

F~ = i w u  (BC--AC 
-0 

which together with (46), (26 )  and ( 3 2 )  se rve  to  obtain the A .  wave amplitudes. 
J 

17 



Upon introducing the following notation 

There  does not appear  to be any advantage in analytically inverting 

the Eqns. 

inversion w a s  consequently done numerically. 

field, required to obtain the axial  antenna current ,  is then obtained as 

(53) to (55) because of the complexity of the coefficients; the 

The p -component of magnetic 

where 

1 1 2 
3j 

c = ( D - p  A) H~~ - p o p o ~ ~  
j ?i 

- ~ P c + H  

while the z-component is given by 

The antenna surface cur ren t  in  the z-direction is obtained f r o m  

18 

(57)  

1 
I 
t 
8 
i 
I 
B 
1 
1 
1 
I 
1 
I 
I 
1 
1 
I 
1 
I 



I (z, t )  = h ( c ,  z, t )  ~ I T C  
CD Z 

(58) 
i w  t = Iz ( z ,w)  e 

Similarly, we obtain the surface current  in the azimuthal direction as 

= - 2 1 ~ c h ~  (c,  Z, t )  

(59) 
iwt 

= I9 (z,w) e 

where for  purposes of comparison with Iz, we have multiplied the 

sur face  cur ren t  per  unit length by 2nc. 

?directed 

Also 



The antenna admittance Y, is for  unit excitation voltage given by 

I ( 6 / 2 , w )  = Y (a) = G (w) + i B  (a) (60) 
2 

and is obtained by a numerical  integration of (58). 

numerical  integration technique used is given in I. 

admittance resu l t s  to be presented should be bet ter  than one percent,  unless  

otherwise indicated. Limitations on the accuracy a r e  due principally to  

replacing the integration in (58) by a summation and truncating the inte- 

gration a t  a finite value of 6. The e r r o r  associated with the f o r m e r  may 

be adjusted by specifying the convergence accuracy of the numerical  inte- 

gration, while the la t te r  e r r o r  is adjusted by specifying the allowable t run-  

cation e r r o r  as discussed in I. 

then desired may sometimes resul t  f rom computer overflow in which c a s e  

the specified smallness  of truncation e r r o r  may not be achieved. 

A discussion of the 

The accuracy of the 

An ea r l i e r  termination of the integration 

The evaluation of the admittance values f o r  the present  case  of the 

compressible  magnetoplasma was considerably more  t ime consuming than 

required to  obtain the r e su l t s  given in I and I1 pr imar i ly  because finding the 

eigen values of the wave equations r equ i r e s  obtaining the complex ze ros  of a 

complex cubic equation. A typical admittance value for  I and I1 required 

about one minute of 7090 t ime  for i t s  calculation, whereas in the present  

case,  this  t ime may be on the o rde r  of 3 o r  4 minutes. The convergence 

tes t  was used in evaluating the antenna admittance,  o r  Iz ( 6 / 2 ,  a), so that 

a s  mentioned in 11, the values obtained f o r  I9 ( 6 / 2 ,  o) may not be as  accura te  

as those given f o r  I z ( 6  / 2 ,  a). 
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11. 3. The Inhomogeneous Sheath 

F o r  purposes of completeness, the equations requiring solution for  

the inhomogeneous sheath model a re  included here ,  though no numerical  

computations a r e  included in  this  report  for  the inhomogeneous sheath. 

When the inhomogeneous sheath i s  considered, then the l inearized var iables  

introduced in (7) a r e  modified by 

while (11) is now 

- - P v(r, t )  x Hz m 0 - -  

which more  clear ly  demonstrates  the resul t  of a non-zero temperature  o r  

non-zero y on the electron equation of motion. 
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t 1 

It may be shown that using (10) and (11) in (9) leads to (13a) in 

the same way a s  before, but where now 

- k =  - 

and where 

kl 0 

kl 0 

0 0 k3  i 
i 

Thus the effect of the inhomogeneity is to introduce two additional t e r m s  in  

the k matrix. - - 
We find from (3) that 

since N is a function of p only so that with 

E ( p )  = 

we find 

N(p)  = Ncoexp(q@p) /kT)  

with Nco the electron density in the uniform plasma. We wi l l  assume 

I M that @ (r) va r i e s  a s  

; c . , , p < s  - __. 

where M is an adjustable parameter  and 
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with m.  the ion m a s s  ( see  Self; 

f o r  the static sheath electr ic  field and electron density a r e  approximations a t  

1963). It should be noted that these equations 
1 

best  fo r  even the rnagnetic-field-free case.  However, they seem to  be a 

reasonable f i r s t  o rder  attempt to  include the sheath inhomogeneity in the 

analysis. 

It may be seen in  (61) that N(p) is independent of TI at least  explicitly 

and could apparently be an a rb i t ra ry  function of p ,  but since in reali ty the 

sheath thickness is proportional to the electron Debye length D where P 
= v r / w 3 w p )  = l , /kT/m / w p  DR 

then s a c  a s  T-0 so  that the electron density variation would be confined 

to a decreasingly thinner region with decreasing temperature .  

sidering ei ther  the vacuum sheath or  inhomogeneous sheath models, a rea l i s t ic  

sheath thickness presupposes consideration of a rea l i s t ic  electron temperature  

r ega rd le s s  of whether o r  not the compressible plasma model is being con- 

s idered.  

Thus in con- 

Since the f i r s t  o rde r  differential equations a r e  more  convenient to 

deal with in  a numerical  analysis, we present here  the f i rs t  o rder  differential 

equations which apply in the sheath. They a r e  

I 
8 
I 
I 
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These equations (62)  reduce to  those given in I1 for  the inhomogeneous 

incompressible plasma by setting Y and E equal to zero.  It is necessary  

to  set E equal to  ze ro  in the dynamic equations given he re  to  recover  those 

in I1 since the equations in I1 were obtained by dropping at  the outset the 

p r e s s u r e  t e r m  in the dynamic electron equation of motion, with the resu l t  

that no t e r m  in E 5  a r i s e s  in 11, as does appear h e r e  in (62f) .  
,+ 

This  occur s  

since in  I1 the plasma is considered of ze ro  tempera ture  in the dynamic 

equations, but of non-zero tempera ture  in the s ta t ic  equations in o rde r  to  

provide an inhomogeneous electron density distribution in the sheath. 

plasma is incompressible (i. e. , Y = 0) but of non-zero temperature ,  then 

If the 

M G Z  x: 
(62f)  reduces to  a l inear  relationship a m o n g z  e hT and Q and (61)  

p' cp 

r ep resen t s  a fifth-order differential equation. When in addition, E is set  

to  ze ro  in (62 f )  the r e su l t s  of I1 a r e  then obtained. Finally, when Y is zero,  

the Equations (62)  reduce to those for the inhomogeneous sheath of I. 
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The boundary value problems for  the inhomogeneous sheath may be 

formulated in a fashion s imi la r  to that of I and 11. The tangential e lec t r ic  

and magnetic fields, the normal  electron velocity and the electron number 

density are required to  be continuous a t  the sheath-uniform plasma interface, 

yielding six sca l a r  boundary conditions, where the fields in the uniform plasma 

are  solutions to (21 )  to  (23) .  

a r e  the same as those used for the sheathless  case  above, given by (46) t o  (481, 

in which the field quantities a r e  now solutions to  ( 6 2 )  to  obtain a total  of nine 

sca l a r  equations. The Four i e r  coefficients for  the t ransmit ted fields in the 

uniform plasma may be eliminated f r o m  the boundary condition equations a t  

the sheath uniform plasma interface as before, to obtain six sca l a r  equations 

which determine the six constants of integration of (62a)  t o  (62f).  

The boundary conditions at  the antenna surface 
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111. Numerical  Results 

Because of the complexity of the boundary value problem for  the 

infinite antenna in a compressible  magnetoplasma, the previous discussion has  

been res t r ic ted ,  at least  so  far as any detail  is concerned, to  the sheathless  

case.  Consequently, the numerical  r e su l t s  to be presented he re  are a l so  

l imited to the sheathless case.  

used in obtaining the r e su l t s  to  follow have been chosed to  conform to the c o r r e -  

sponding values employed for  the previous calculations presented in I and 11 . 

The plasma and antenna parameter  values 

F o r  the purpose of comparison and to  demonstrate the change f rom 

the free -space antenna admittance brought about by the immers ion  of the antenna 

in the plasma, Fig. 1 shows the f ree-space  antenna conductance Go and s u s -  

ceptance B 

the exciting gap thickness 5-a parameter ,  ranging f rom 10 

antenna radius  c of 1 cm.  

as a function of frequency over the range 250 KHz to 10 MHz, with 
0 

-1 - 3  to  10 c m  and an 

It may be seen  in Fig. 1 that the f r e e  space conductance 

is independent of the exciting gap thickness and the susceptance is only slightly 

dependent upon the gap thickness, a feature  discussed previously in m o r e  detail  

in I. In addition, over the frequency range used, the conductance exceeds the 

susceptance by a factor  of about 5. In the subsequent graphs,  the antenna radius  

w i l l  be 1 c m  and the gap thickness 0. 1 cm. 

W e  now present in Fig. 2 the admittance when the antenna is 

immersed  in the compressible,  magnetoplasma medium with f 

f h  = 1 . 0  MHz, v =  10 sec-l, T = l ,  500°K, &= 10-lcm and c = l  cm.  The vacuum 

= 1. 5 MHz, 
P 

4 

sheath thickness,  in  units of the electron Debye length D" is denoted by X on 

these and subsequent graphs; because this  is the sheathless  case ,  X=O. Above 

1 ,_ 

the upper hybrid frequency f =df2+f2 t p h' the conductance and susceptance a r e  seen 

in Fig. 2 to be in approximately the i r  f r e e  space ra t ios  and increasing toward 

their  f r e e  space values a s  the frequency is increased.  The re  is a conductance 
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Figure 1. The f r e e  -space infinite cyl indrical  antenna admittance as a function 
of frequency with the exciting gap th ickness ,&,  a parameter  and a 
radius,  c, of 1 cm. 
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Figure 2. The infinite antenna admittance as a function of frequency fo r  the 
compressible,  magnetoplasma and the sheathless  case  with a radius  
of 1 cm, an  electron plasma frequency of 1. 5 MHz and electron 
cyclotron frequency of 1 .0  MHz. 
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minimum and susceptance ze ro  a t  f = f 

capacitive above f t o  inductive immediately below it. t 

decreased below ft, a susceptance minimum o r  

the conductance has  a r a the r  sha rp  minimum just  below f 

susceptance maximum occurs  between f 

conductance maximum a lso  is seen. Fur ther  decreasing the frequency below 

fh  resu l t s  in a slowly decreasing conductance, and another susceptance zero,  

below which the susceptance is again capacitive. The low frequency par t  of 

the susceptance curve is marked with superimposed c r o s s e s  since the s u s -  

ceptance values obtained h e r e  a r e  estimated to be accurate  to no bet ter  than 

10 p e r  cent; this  coding w i l l  be used on subsequent graphs for  the same purpose. 

the susceptance changing f r o m  t '  

A s  the frequency is 

while 1 1  kink" occurs  at f 
P' 

A ra ther  broad 

and fh,  where a somewhat sha rpe r  
P' 

P 

In Fig. 3 the infinite antenna admittance resu l t s  a r e  presented for  

the same se t  of parameter  values as  used for  Fig. 2 with the exception that the 

values  of f and f have been interchanged, f now being 1 .0  MHz and fh 1. 5 MHz. 

The admittance above the hybrid frequency is similar to  that for  the previous 

case ,  there  again being a conductance minimum and susceptance ze ro  a t  f 

the frequency is decreased below ft ,  the susceptance and conductance both ex -  

hibit maxima between f and f t h' 

t o  f t  than the wider susceptance maximum. 

through ze ro  close to  fh, below which it is capacitive. Another conductance 

minimum o r  kink is observed at  f and a susceptance minimum is seen below 

f i n  a fashion similar to the resul ts  of Fig. 2 near  f except that the ro l e s  of the 

conductance and susceptance a r e  interchanged in  the two graphs.  

fo r  f sufficiently l e s s  than f is nearly independent of frequency. 

P h P 

As t '  

with the conductance maximum occurring c loser  

The susceptance again passes  

P 

P P 
The conductance 

P 
The significance of the admittance curves  shown in Figs. 2 and 3 

can  perhaps be more  fully appreciated when compared with some of the admit - 

t ance  resu l t s  of I and 11. Therefore,  for  ea se  in  comparing these resul ts ,  we 
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Figure 3. The infinite antenna admittance as a function of frequency fo r  the 

compressible,  magnetoplasma and the sheathless  case  with a radius  
of 1 cm,  an electron plasma frequency of 1 . 0  MHz and electron 
cyclotron frequency of 1. 5 MHz. 
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present  in Figs .  4 and 5 the resu l t s  corresponding to Figs.  2 and 3 r e spec -  

tively for  the sheathless case,  but for the incompressible plasma. The most 

obvious difference between the compressible magnetoplasma and incompres - 

sible magnetoplasma admittances is  the fact that in the la t te r  case,  there  is 

a ve ry  pronounced admittance maximum a t  f 

admittance maximum is reduced in amplitude and shifted upward in  frequency 

f r o m  fh. 

admittance curves  resemble each other, having other admittance maxima and 

minima of very s imi la r  nature.  

while in the fo rmer  case  the h’ 

In other aspects,  the incompressible and compressible  magnetoplasma 

It is very interesting to observe that when compared with the incom- 

press ib le ,  sheathless magnetoplasma admittance resu l t s  shown in Figs.  4 and 

5, the additional effect on the admittance of the magnetoplasma compressibil i ty 

shown in Figs .  2 and 3 is very  s imi la r  to that result ing when the incompressible 

magnetoplasma is separated f rom the antenna by a vacuum sheath, the r e su l t s  

f o r  The sheath thickness used he re  is 5 D  

calculated for  an electron temperature  of 1, 500 K. 

tance curves  f o r  the three c a s e s  considered shows that the vacuum sheath also 

shif ts  upward in frequency and reduces in amplitude the admittance maximum 

which occur s  a t  f f o r  the incompressible sheathless case,  as w a s  discussed 

above in presenting resu l t s  fo r  the compressible  magnetoplasma model. 

of t h i s  main difference, the admittance resu l t s  fo r  the three models a r e  quite 

similar. 

antenna admittance, the magnetoplasma compressibil i ty and vacuum sheath a r e  

f ac to r s ,  which taken separately,  produce changes f rom the antenna admittance 

f o r  the sheathless,  incompressible c a s e  of very s imi la r  charac te r .  

which a r e  shown in Figs.  6 and 7. L 
0 A comparison of the admit - 

h 
Outside 

It is thus apparent that at least f r o m  the viewpoint of the infinite 

This  equivalence of the plasma compressibil i ty 

sheath may be fur ther  i l lustrated by presenting comparable 

isotropic  (magnetic-field-free) plasma, as shown in Fig. 8 
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resu l t s  for  the 

and 9 .  The resu l t s  



lo-2 

UJ 
0 r 
2 
m 
(6 
Y 

 IO-^ 

f p =  1.5 MHz 
f h =  I . O M H t  
v =  104sec-1 
C =  I.Ocm 
8 =  0.1 cm 
x =  0 

I 
I 
I 
I 
I 
I 
I 
I 
I 

- I 
I 
I 

- I 
I 
l 

+ I  IO-^ - It ; 
-+Bl 
- +.i \ *  

\ 

+ '  \ :  I 

0 0.5 I .o I o-6 

b 
\ 
\ 
\ 
\ 
\ 
\ 

\/ -, 
\ 
\ F 

I 

1 
1.5 2.0 2.5 3.0 

f ( M H t )  
Figure 4. The infinite antenna admittance a s  a function of frequency f o r  the 

incompressible magnetoplasma and the sheathless  case ,  with an 
electron plasma frequency of 1. 5 MHz and electron cyclotron f r e  - 
quency of 1 . 0  MHz. 
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Figure 5. The infinite antenna admittance a s  a function of frequency f o r  the 
incompressible magnetoplasma and the sheathless case,  with an 
electron plasma frequency of 1 .0  MHz and electron cyclotron f r e  - 
quency of 1 . 5  MHz. 
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Figure 6. The  infinite antenna admittance as a function of frequency in the in -  
compressible magnetoplasma with a vacuum sheath thickness of 5 D , 
an electron plasma frequency of 1. 5 MHz and electron cyclotron 
frequency of 1. 0 MHz. 
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Figure 7. The infinite antenna admittance as a function of frequency in the in -  
compressible  magnetoplasma with a vacuum sheath thickness of 5 D& , 
an electron plasma frequency of 1. 0 MHz and electron cyclotron f r e -  
quency of 1.5 MHz. 
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of Fig. 8 a r e  f o r  the sheathless case  and those of Fig. 9 a r e  for  the 5 D 

vacuum sheath (the e l ec t ron  tempera ture  used f o r  calculating the sheath 

thickness is again 1, 500°K) with f equal to  1. 5 MHz. 

plasma curves  a r e  denoted by T=O K. 

as f o r  the magnetoplasma case,  the plasma compressibil i ty and vacuum 

sheath, taken separately, change the admittance f r o m  the sheathless,  i n -  

compressible  case in very s imi la r  fashion. In par t icular ,  an admittance 

maximum occurs below the plasma frequency (at  roughly half the plasma 

frequency for  the c a s e s  shown) whenever there  is a sheath o r  the plasma is 

compressible .  

case discussed above, a s imi la r  influence is exercised by the plasma com-  

pressibi l i ty  and vacuum sheath on the infinite antenna admittance. Conse - 

quently, while admittance resu l t s  a r e  not given h e r e  for  the compressible ,  

sheathed, magnetoplasma case,  it  appears ,  based on the resu l t s  thus far shown, 

that this  model would not be expected to be very  significantly different f r o m  

the sheathless case already considered. 

admittance on the plasma anisotropy, plasma compressibil i ty and the vacuum 

sheath comes  from the nature of the cur ren t  waves excited on the infinite antenna 

fo r  these various plasma models. 

t o  justify a separate discussion, to be given in a subsequent report .  

P 

The incompressible 

It may be seen in Figs.  8 and 9 that 
P 
0 

Thus we wee that in the isotropic plasma, a s  for  the anisotropic 

P a r t  of the explanation of the antenna 

This  topic is of sufficient interest  and depth 

Although not a s  significant a physical quantity as the axial  antenna 

current ,  the ci rcumferent ia l  cur ren t  has  some significance, since it is de ter  - 

mined by the TE mode axial  magnetic field, which is of course  ze ro  when the 

plasma is isotropic. 

anisotropy a s  seen by the antenna, when compared with the axial  cur ren t ,  which 

comes  f r o m  the T M  mode circumferent ia l  magnetic field; the magnitudes, of the 

two cu r ren t s  serve to indicate the degree of excitation of the two electromagnetic 

modes. 

It may thus be viewed a s  an  indicator of the magnetoplasma 
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Figure  8. The infinite antenna admittance as a function of frequency in  an  i so -  

t ropic  plasma for  both the compressible  (T=l,  500°K) and incompres-  
sible (T=O°K) cases  and z e r o  sheath thickness with an electron plasma 
frequency of 1. 5 MHz. 
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Figure 9. The infinite antenna admittance as a function of frequency in an  i s o -  
tropic plasma for  both the compressible  (T=l, 500°K) and incompres-  
sible (T=O°K) c a s e s  and a -a.cuum sheath thickness of 5 D A  with an 
electron plasma frequency of 1. 5 MHz. 
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Thus we present  in Figs. 10 and 11 the circumferent ia l  antenna 

current ,  a t  z= 5 / 2 ,  fo r  the same plasma pa rame te r s  used for  Figs. 2 and 3 

respectively. The quantity plotted is I = R  + i I, the current  density K multi-  

plied by ~ T C ,  so  that a direct  numerical  comparison with the axial cur ren t  is 

meaningful. It is interesting to  see that the circumferential  cur ren t  magnitude 

is generally 1 to  2 o r d e r s  of magnitude l e s s  than the corresponding axial cur ren t .  

A s  might be expected, the circumferential  cur ren t  is la rges t  near  fh ,  appearing 

to  reach  i t s  maximum value a t  the same frequency a s  does the axial current .  

It is a l so  interesting to  s e e  that the circumferent ia l  current  exhibits minima 

o r  "kinks" a t  f = f  

cp 

in a fashion s imilar  to that shown by the axial current .  
P 
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Figure 10. The circumferential  cur ren t  a s  a function of frequency fo r  the corn- 
pressible  magnetoplasma and the sheathless  case  with an  electron 
plasma frequency of 1. 5 MHz and electron cyclotron frequency of 
1.0 MHz.  
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pressible  megiietoplasma and the sheathless  case  with an electron 
plasma frequency of 1.0 MHz and electron cyclotron frequency of 
1. 5 MHz. 
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IV. Comparison with Experimental  Results 

While this  study has  been devoted to an investigation of the p lasma-  

immersed ,  infinite cylindrical antenna because of a number of theoretical  

considerations, the ult imate goal of coming to a bet ter  understanding of an 

actual antenna immersed  in the ionospheric plasma has  not been forgotten. 

The rationale which has  been followed is that the medium influence which is 

apparent in the change of the infinte antenna admittance f rom i t s  f r e e  space 

behavior, would provide a general  indication of the corresponding behavior of 

the finite antenna in  the same plasma medium. In line with this,  it was ant ic i -  

pated that some swept -frequency experimental  impedance resu l t s  would be 

available f rom a rocket -borne antenna which would provide some extremely 

useful data f o r  comparison with the theoretical  findings presented here ,  as well 

as with some simpler theories  of finite antenna impedance in the l i t e ra ture ,  

It may be mentioned that there  is a scarc i ty  of systematic  ionospheric impedance 

measurements  now available f o r  comparison with theory. 

a series of rocket flights by Heikkila e t ,  al. (1966), most  published impedance 

With the exception of 

data is for  a s e r i e s  of fixed frequencies,  which means that an impedance vs .  

frequency plot for a constant set  of plasma pa rame te r s  is not available. The 

above-mentioned experiment was designed in par t  to  f i l l  th is  gap. 

The f i r s t  rocket which ca r r i ed  this  experiment was successfully 

launched to  an altitude of 290 Km, and about 75 swept-frequency impedance 

records ,  f r o m  800 KHz to 8 MHz, together with other re la ted data, have been 

obtained f r o m  it. This  data is presently being reduced and analyzed, and in -  

cludes in addition to the impedance measurement ,  a t ransmiss ion  experiment,  

a relaxation resonance experiment,  a conventional Langmuir probe and 

simultaneous ionosonde record,  which should be  extremely useful in a s s e s s  - 

ing varoius diagnostic techniques for  e lectron density measurements ,  a s  well 

as interpreting the  impedance resul ts .  These  r e su l t s  wi l l  be reported on in 

the near  future. 
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Some comments can be made however, about the numerical  resu l t s  

obtained here  compared with some of the experimental data presented in the 

l i terature .  We r e f e r  in particular to  the experimental  impedance resu l t s  of 

Heikkila et. al. (1966) mentioned above, for a spherical  antenna, as well as 

the data published in a s e r i e s  of a r t ic les  by Stone, Weber and Alexander 

(1966a, 1966b, 1966c) for a cylindrical antenna. There  a r e  some features  

exhibited by the experimental impedances which appear to cor re la te  with the 

theoretical  admittances presented above. 

Fo r  example, one of the prominent features  of the theoretical  admittance 

curves  for the magnetoplasma case is a r a the r  sharp  minimum o r  "kink" which 

occurs  in e i ther  the susceptance o r  conductance, whichever is the la rger ,  o r  

possibly both together, at  the plasma frequency. The resu l t s  of Heikkila et. 

al .  show a consistent susceptance discontinuity a t  the plasma frequency (though 

none is seen in the conductance), with values for f obtained from this indicator 

agreeing well with other independent measurements.  

exhibited by Stone et. al's. impedance resu l t s  when f ( f  there  being an 

abrupt change in the reactance and pronounced resis tance peaking at  f = f  . 
f 5 f on the other hand, only the resis tance shows a noticeable increase a t  

f = f  It should be remarked that the resu l t s  of Stone et. al. a r e  for fixed f r e -  

quencies and shown a s  a function of antenna altitude (or  equivalently, a s  a 

function of the plasma frequency) s o  that an exact comparison with the 

theoret ical  resu l t s  presented above, where the frequency is varied, is not 

possible.  There is however, a qualitative s imilar i ty  between the quoted 

experimental  resu l t s  and the infinite antenna theoretical  resu l t s  presented 

h e r e  as well  a s  numerical  impedance values obtained from the theory of 

Balmain (1966)  for a finite antenna, which is discussed more  fully in 11. 

P 
A s imi l a r  behavior is 

P h' 
When 

P 

P' h 

P' 
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A second character is t ic  which the theoretical  admittance results exhibit, 

an admittance maximum shifted upward from f by ei ther  the vacuum sheath 

or  plasma compressibility, is a l so  observed consistently in the measurements  

of Heikkila et.al. This behavior of the measured admittance has ledBalmain 

et. al. (1967) to conclude, f rom the application of a quasistatic theory for  the 

antenna impedance, that a positive ion (or vacuum) sheath is responsible for  

the observed upward shift of the admittance maximum from fh. A s  has been 

mentioned above, the findings from the infinite antenna analysis show that 

this shift may be due to  e i ther  a sheath o r  the plasma compressibil i ty.  It 

s e e m s  likely that for  a n  actual antenna in the ionosphere, the shift may be 

due to  a combination of both effects acting together; i t  is impossible to now 

say  which would exer t  the grea te r  influence on the finite antenna. However, 

the infinite antenna resu l t s  indicate that the sheath may be m o r e  effective in 

this  role  than the plasma compressibil i ty.  

h 

Finally, the infinite antenna findings show that an admittance minimum 

is to be expected at the upper hybrid frequency ft, and m o r e  specifically, the 

susceptance changes sign there .  This behavior, it should be noted, has not 

been found to be shifted in frequency by the vacuum sheath o r  plasma compress i -  

bility. The resul ts  of Stone et. al. do posses  a susceptance z e r o  and con- 

ductance minimum in the vicinity of f On the other  hand, the measurements  t' 
made by Heikkila et. al .  do not consistently exhibit a susceptance ze ro  at  

f , but they do however, consistently show a minimum in the admittance t 

magnitude a t  f (according to  Balmain, et .  al. (1967)). t 

Thus, while the amount of experimental  data available in the l i t e ra ture  

f o r  comparison with our theoretical  findings is l imited,  we  see that what 

there  is appears  to  agree  in some fair ly  significant details  with the theoret ical  

resul ts .  It is hoped that when the data f rom the rocket shot mentioned p r e -  

viously is reduced that a more  detailed comparison between experiment and 

theory wi l l  be possible. 
44 



V Conclusion 

This report  has presented a theoretical  development and numerical  

calculations f o r  the admittance of an infinite cylindrical antenna excited a t  

a c i rcumferent ia l  gap of non-zero thickness and immersed in a lossy, 

compressible magnetoplasma, with the s ta t ic  magnetic field paral le l  to the 

antenna axis.  

obtained by a numerical  integration of the Four ie r  integral  for  the antenna 

cu r ren t  evaluated a t  the exciting gap, and a r e  presented for  plasma parameter  

values typical of the E-region of the ionosphere. A vacuum sheath model and 

inhomogeneous sheath model have been considered in the analysis,  but due 

to the complexity and thus time-consuming nature of the calculations, the 

numerical  resu l t s  a r e  given fo r  the sheathless case only. 

giving resu l t s  f o r  the antenna admittance, which requi res  evaluation of the 

axial  antenna current ,  some resul ts  have also been presented for  the circum- 

ferent ia l  cur ren t .  Finally, the most significant aspects of the calculated 

admittance a r e  compared with some experimental measurements  made with 

antennas operated in the ionosphere. 

Numerical values for the antenna admittance have been 

In addition to 

The infinite antenna admittance resu l t s  presented here  for  the sheathless,  

compressible  magnetoplasma case show that, compared with the incompressible 

magnetoplasma resu l t s ,  the plasma compressibil i ty in the fo rmer  case  and the 

vacuum sheath in the la t te r  ca se  influence the antenna admittance in very  

s i m i l a r  ways. 

e lectron cyclotron frequency when there  is no sheath and the magnetoplasma 

is incompressible,  is shifted upward in frequency and reduced in magnitude by 

both the vacuum sheath and plasma compressibil i ty.  This effect is more  pro-  

nounced when f > f then for the converse situation. Other than this significant 

In par t icular ,  an admittance maximum which occurs  at  the 

P h  

45 



change, the sheathless magnetoplasma admittances for both the compressible  

and incompressible cases  a r e  very  s imi la r .  

The antenna susceptance is found to be, broadly speaking, inductive 

Besides the admittance maximum when f < f < f  h t 

nea r  f 

sha rp  minimum in both the conductance and susceptance a t  f . 

there  is a susceptance maximum only just  above f 

mum just  below this. 

and capacitive otherwise. 

a second maximum occurs  just  above f when f > fh, with a r a the r  

When f < fh, 
h ’  P P 

P P 
with a conductance mini- 

PI 

Above the upper hybrid frequency, the antenna admittance is not greatly 

affected by the plasma compressibil i ty,  anisQtropy o r  vacuum sheath, while 

only when all of these factors  are absent is there  no admittance maximum below 

f t .  

the first two appear to  exer t  the grea tes t  influence on the infinite antenna a d -  

mittance when immersed in a plasma. 

Of these three factors,  the magnetic f ie ld ,  sheath and plasma compressibil i ty,  

A comparison of the theoretical  admittance values for  the infinite 

antenna which have been given here  with some experimental  measurements  

performed in  the ionosphere, reveals  that the theoretical  and experimental  

resu l t s  a r e  qualitatively al ike in some significant details .  

admittance maximum above the electron cyclotron frequency, an admittance 

minimum o r  kink at the electron plasma frequency, and an  admittance mini- 

mum a t  the upper hybrid frequency a r e  all features  that appear  in both the 

experimental  and theoretical  resu l t s .  

ca r r i ed  out thus appears  to incorporate in i t  at leas t  some  of the m o r e  important 

physical processes  which ac t  on an actual antenna in an  ionospheric-type plasma 

and may thus provide more  insight into the interpretat ion of the r a t h e r  exten- 

s ive experimental p rogram of impedance measurements  which has  been s ta r ted .  

The location of an 

The theoretical  study which has  been 
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At the same  time, the relative success  of the theory thus far used in accounting 

for the pertinent aspec ts  of the expected experimental measurements  should 

give more  positive indication of what a r e  the major  physical p rocesses  in-  

volved, and what modifications could be incorporated in the theory, e .  g. ,  

considering an inhomogeneous sheath, to bring the theory and experiment into 

c lose r  agreement.  

thus established may be used in  developing a theory for the plasma-immersed 

finite antenna, possibly by a direct formulation of the problem in an appropriate 

finite geometry, o r  by extending the infinite antenna analysis through the use  

of multiply reflected cur ren ts  ona finite antenna, as done by Chen and Keller 

(1962) for  free space.  

Finally, it would be hoped that the major  physical p rocesses  

47 



Appendix A 

The reduction of the non-zero temperature  magnetoplasma equations 

to  those f o r  the zero temperature  magnetoplasma when the limit T-0 is used in 

the fo rmer  equations is shown here.  The warm plasma equations a r e  given in 

the text by (18) t o  (20) and when the l imit  T+O is used, these equations reduce 

to  (21 )  to  (23). 

f rom the ze ro  temperature equations, as w a s  done in 11, the equations for  which 

a r e  given by (24) and (25). 

Our problem is to reduce ( 2 1 )  to  (23) to  the fo rm derived direct ly  

Upon substituting (23) into ( 2 1 )  and ( 2 2 )  we obtain 

XY 2 V2C Z + ( ~ i ~ c ~ - ~ ~ )  % Z + i P 6  0 - u2 z 

These  reduce to  

A G 

The gz t e r m  in the hZ equation can be written a s  

y2 Y E 3  1; ip(oox . 
U t p  -Y ) C1(U -Y ) 2 2  

48 



1 - 2 Y, 2 -  €3 h e = O  
17; i- K~~ ( c _  3-i -) - P  Gz+ iPw€oX - 2 2  z ( U  -Y ) 1 J ut 1 t 

1 - - -  

e-1 

I It was shown in I1 that a direct  derivation of the ze ro  tempera ture  

X Y 2  + -  X l - -  2 2  2 2  ( U  -Y ) U(U -Y ) 

magnetoplasma equations f rom 
- -  ?._ 

v x g  = - iwu h 

C& = i4 0" c.Z - 
0- - 

I 
- c 

- - 

produces 

Some of the t e r m s  in these equations a r e  identical and thus check. The others  

must  be shown to be the same.  Now 
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- 
so  the differential equation f o r  checks. In addition, 

Z 

so 

.... G 
and the ez par t  of the hZ equation a l so  checks. Finally, 

and since 

- 
s o  that the h Z  wave equation a l so  checks for  both derivations.  

Another limiting p rocess  of interest  is the case  of the uniaxial 

plasma, where Y-co. 

way. 

that gz remain  finite, the t e r m s  multiplied by Y must  cancel. 

In this  c a s e  then (18) to  ( 2 0 )  simplify in  the following 
. w \ 

Since Y multiplies the e and hZ t e r m s  in the h equation, then in o r d e r  
Z Z - 

This  means 



which may a l so  be deduced f rom the equation for  z. 
n and,$ a r e  l inearly related,  only two wave equations, which a r e  

We then obtain, since 
- . .- 

Z 

(Kko€,-P2) + P 2x [ w u  4 
e = O  

Z 

Because of the l imit  Y-a, it  may be verified f rom (14) that 
- -- -_ - 

v and become zero,  as a l so  does e . Consequently, the only boundary 

condition remaining to  be satisfied is that on .zz, and the number of modes 

radiated by the antenna reduces from th ree  for  the compressible,  magneto- 

p lasma to  one for the compressible,  uniaxial plasma which is the T M  mode, 

the wave equation for  which is given by ( A l l ) .  

f o r  th i s  mode is a ra ther  complicated function of p , vr, c3, w and KEo. 

P cp (P 

The radial  propagation constant 

If the zero- temperature  l imit  is now taken in the uniaxial equation, 

then the only wave equation affected is ( A l l )  which becomes 

T h i s  equation is the same on that obtained f rom (25), which applies for  the 

incompressible  magnetoplasma, when the l imit  Y-co is taken in (25). However, 

the equation for  E obtained when Y-co and then V--.-- O and given by (A10)  differs 

f r o m  that when f i r s t  vr---O and then Y-co since (2-4) becomes, for  Y-co, 

I -  

Z r 



This  differs from (A10) in the fact t h a t c g  multiplies K k o  in (A10) but not 

in  (A12) .  

The explanation f o r  this  apparent discrepancy l i e s  in the fact that 
-- FI 

when Y = 03, regardless  of the value of vr, h 

by noting f rom(l4) tha t  for  an infinite static magnetic field, v 

a s  well a s  e 
hand side, showing that zz is a l so  zero.  The TE (with respect  to the s ta t ic  

magnetic field direction) mode cannot be excited then in an uniaxial plasma. 

is zero.  This  may be shown 

and 7 
P cp 

Z 
Tv 

, 

a r e  zero.  Then the z-component of (12 )  is ze ro  on the left 
cp 
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